重庆市 两江新区
19802308676 19802308676@139.com
08:30-22:30 22:30-08:30
本报告简要讨论了几种常用于评估表面形貌(也称表面结构或表面光洁度)的重要计量方法和标准定义。随着纳米技术、薄涂层以及电路和装置小型化的出现,表面计量学已经成为一个极其重要的科学和工程领域。其从微米级和亚微米级特征的角度研究表面形貌的精确、代表性表征。这些特征构成了表面的波纹度、粗糙度和层次。形貌在确定许多现代技术、组件、部件和产品(例如电机、涂层、电子设备等)所用材料的机械、热、光学和电气性能方面起着至关重要的作用。
什么是表面计量学?它为什么有用?
表面计量学是测量表面的特征(规则图案、不规则性、粗糙度、波纹度、关键尺寸等)。表面形貌(也称为表面纹理或光洁度)在很大程度上决定了其机械和物理性质,例如摩擦、粘附、氧化、导热性和导电性等。形貌对于先进技术和设备(高级涂层、轴承、热、光学和电子/半导体装置)所用的材料很重要。例如,较大的表面粗糙度通常会增加两个接触部件之间的摩擦力。部件之间的摩擦力变大会导致更快的磨损和更短的寿命。半导体表面微小不规则性的形成可引起电荷局部化和非均匀电学性质。由于氧化、表面张力、污染或加工,表面区域的性能通常而与主体区域不同,表面区域可大致定义为材料表层的前100个原子层。例如,机械或化学抛光或蚀刻等材料制备方法会导致表面缺陷和粗糙。由于用于制备表面的大多数工艺(机械或化学)会导致缺陷和不规则性,因此需要计量仪器和方法来评估表面形貌,并确定其对设备性质(包括性能、可靠性和使用寿命)的影响。表面计量学方法用于检查和测量表面不同长度尺度和空间频率的形貌。粗糙度通常通过测量表面图案或不规则性的高度、宽度和周期性/频率来确定。波纹度由比粗糙度更大尺度(较低频率范围)的表面不规则性定义。均匀表面是各向同性的。层次是指表面特征的方向性(各向异性),其通常是由于材料制造或处理引起的。下文将讨论这些标准形貌或纹理参数(粗糙度、波纹度、层次和缺陷)。表面表征方法肉眼、指尖和低分辨率光学显微镜通常可快速评估宏观特征和大缺陷。然而,精细表面轮廓和形貌的详细测量则需要先进的表面表征技术。可使用各种高分辨率技术,通过二维或三维(2D或3D)测量来确定表面形貌。为特定目的选择合适的技术非常重要,因为它们都有其优势和局限性。在这里,我们仅介绍材料科学中一些最广泛使用的方法,例如表面探针(触针、AFM)、光学与干涉测量方法和电子束方法。测量落在表面线轮廓或区域上的点的垂直(z)高度,并显示表面的2D轮廓或3D图。使用定义的统计分析方法分析数据,所得值用作表征表面形貌的参数,更具体地说,即表面粗糙度、波纹度、层次和缺陷。可使用各种方法获取2D或3D的表面形貌图像。最常用的是[1-3]:接触/非接触式轮廓测量法和探针显微镜,其中形貌数据通过表面上的精细探针扫描来收集;使用光的干涉测量、聚焦和相位检测或共聚焦显微镜的光学轮廓测量法;以及使用通常需要特殊软件来显示3D形貌的扫描电子显微镜(SEM)。常用的探针成像方法是原子力显微镜(AFM)。虽然其可获得非常高的横向(XY)和垂直(Z)分辨率,但获取形貌数据非常缓慢,且存在表面改变或损坏的风险。此外,由于磨损和污染,探针的形状和尺寸可能在扫描期间发生改变。这种现象会影响所获取表面形貌中特征的外观,因为探针和特征几何形状混合在一起,这是一种卷积[4]。图1显示了一个示例。通过AFM获取良好结果,还要求用户拥有一定的经验。
表面计量学是测量表面的特征(规则图案、不规则性、粗糙度、波纹度、关键尺寸等)。表面形貌(也称为表面纹理或光洁度)在很大程度上决定了其机械和物理性质,例如摩擦、粘附、氧化、导热性和导电性等。形貌对于先进技术和设备(高级涂层、轴承、热、光学和电子/半导体装置)所用的材料很重要。例如,较大的表面粗糙度通常会增加两个接触部件之间的摩擦力。部件之间的摩擦力变大会导致更快的磨损和更短的寿命。半导体表面微小不规则性的形成可引起电荷局部化和非均匀电学性质。
由于氧化、表面张力、污染或加工,表面区域的性能通常而与主体区域不同,表面区域可大致定义为材料表层的前100个原子层。例如,机械或化学抛光或蚀刻等材料制备方法会导致表面缺陷和粗糙。由于用于制备表面的大多数工艺(机械或化学)会导致缺陷和不规则性,因此需要计量仪器和方法来评估表面形貌,并确定其对设备性质(包括性能、可靠性和使用寿命)的影响。
表面计量学方法用于检查和测量表面不同长度尺度和空间频率的形貌。粗糙度通常通过测量表面图案或不规则性的高度、宽度和周期性/频率来确定。波纹度由比粗糙度更大尺度(较低频率范围)的表面不规则性定义。均匀表面是各向同性的。层次是指表面特征的方向性(各向异性),其通常是由于材料制造或处理引起的。下文将讨论这些标准形貌或纹理参数(粗糙度、波纹度、层次和缺陷)。
表面表征方法
肉眼、指尖和低分辨率光学显微镜通常可快速评估宏观特征和大缺陷。然而,精细表面轮廓和形貌的详细测量则需要先进的表面表征技术。
可使用各种高分辨率技术,通过二维或三维(2D或3D)测量来确定表面形貌。为特定目的选择合适的技术非常重要,因为它们都有其优势和局限性。在这里,我们仅介绍材料科学中一些最广泛使用的方法,例如表面探针(触针、AFM)、光学与干涉测量方法和电子束方法。
测量落在表面线轮廓或区域上的点的垂直(z)高度,并显示表面的2D轮廓或3D图。使用定义的统计分析方法分析数据,所得值用作表征表面形貌的参数,更具体地说,即表面粗糙度、波纹度、层次和缺陷。
可使用各种方法获取2D或3D的表面形貌图像。最常用的是[1-3]:
接触/非接触式轮廓测量法和探针显微镜,其中形貌数据通过表面上的精细探针扫描来收集;
使用光的干涉测量、聚焦和相位检测或共聚焦显微镜的光学轮廓测量法;以及
使用通常需要特殊软件来显示3D形貌的扫描电子显微镜(SEM)。
常用的探针成像方法是原子力显微镜(AFM)。虽然其可获得非常高的横向(XY)和垂直(Z)分辨率,但获取形貌数据非常缓慢,且存在表面改变或损坏的风险。此外,由于磨损和污染,探针的形状和尺寸可能在扫描期间发生改变。这种现象会影响所获取表面形貌中特征的外观,因为探针和特征几何形状混合在一起,这是一种卷积[4]。图1显示了一个示例。通过AFM获取良好结果,还要求用户拥有一定的经验。
表面表征的光学方法可以具有高垂直(z)分辨率,但不如探针方法或电子显微镜的横向(xy)分辨率。但是形貌采集要快得多。这意味着光学方法可提供大面积的表面形貌数据,使其更适用于可靠、准确的统计分析。
SEM也可获得非常高的分辨率,但需要在真空室中进行成像。如果材料的导电性不够,则在电子束中会发生充电,因此样品必须涂一层导电膜。采集图像通常会很耗时。
来源:徕卡显微系统
https://mp.weixin.qq.com/s/em0_cPAcaUIXAo6VRIjx8w
取您所需,利用徕卡显微系统的细胞和组织培养倒置显微镜提高活细胞成像工作流程中的效率。
这些使用简便的显微镜允许您根据自身需求配置相应的成像解决方案,可搭载灵活多样的聚光镜选件和数字成像记录功能,从未为您的实验室打造恰到好处的解决方案。
徕卡细胞培养显微镜系统特性:
操作简便,所需的培训和维护量极小,以便您将精力都集中在研究工作上
冷光源 LED 照明在所有光亮度级别下提供恒定的色温
简易荧光装置 (选配) 可轻松呈现您的荧光标记
高清成像 (选配) - 将高清摄像头直接连接到显示器或 PC;提供高质量的可发表图像
灵活的工作距离,最高可达 80 mm,可容纳载玻片、petri 培养皿、多孔板和较高的培养瓶
细胞工厂解决方案可容纳最高 400 mm 的器皿
细胞分类
细胞外形
实验室培育的动物细胞可根据多项标准进行区分:
显微镜下可以轻松地识别其形态。成纤维样细胞为双极或多极细长形状,而上皮样细胞呈多边形。与上面两种细胞不同的是,淋巴母细胞样细胞并非贴壁生长,而是悬浮生长。
细胞的类型可细分为永生细胞、原代细胞和干细胞。
细胞组织形式可谓丰富多样,从简单的二维单层培养细胞到二维共培养细胞,再到三维球状细胞团和类器官
名称
形态学
来源
COS
成纤维细胞样
非洲绿猴
HEK 293
上皮样
人类
CHO
仓鼠
MDCK
狗
HeLa 细胞
Jurkat
淋巴母细胞样
将细胞系用于细胞培养的一些实例。
细胞培养材料
如何培养细胞
动物细胞在各类不同的器皿中培养,涵盖用于基础研究的小型微流体装置、用于筛选目的的 96 孔板乃至用于大规模药物生产的细胞培养瓶和细胞工厂。
鉴于其一次性使用特点,多数容器使用塑料制成。其它器皿则专为显微镜应用优化设计,因此具有玻璃底。
动物细胞培养基包含:
水
能量来源
氨基酸
维生素
以及盐类
此外,它还包含缓冲系统和 pH 值指示剂,用于检查 pH 值是否平衡。
细胞培养维护
您的日常工作内容是什么?
由于细胞会消耗培养基中的成分,必须定期补充培养基。在这种情况下,细胞培养过程中应进行目视检查,以观察汇合程度和健康度并检测潜在的微生物污染。
永生细胞系的一个特征就是无限增殖。因此,它们必须时不时进行分裂 (传代) 并转移至单独的培养器皿中。
通常,培养的细胞在用于实验前就进行了基因改造。例如,借助 转染操作,研究人员为所需要的蛋白质添加 荧光标记 ,以便通过显微镜将其可视化。
MDCK cells in different confluence stadiums.
显微镜 – 基本要求
我需要哪种工具?
为管理细胞培养实验室的日常工作,显微镜是一件必需品。此类显微镜必须具备倒置配置。倒置显微镜采用“物镜位于样品下方,聚光镜位于样品上方”的设计,这样就能使物镜尽量贴近细胞,并在上方保持较大的工作距离。
由于动物细胞的固有反差极低,细胞培养显微镜必须提供诸如相差等反差观察法。DIC (微分干涉相差) 在这里无法发挥作用,因为该技术无法配合塑料器皿用于细胞培养。DIC 有一个很好的替代方案,那就是 IMC (整合调制相差),该技术不仅能搭配塑料容器使用,而且无需借助专用物镜或棱镜。此外,细胞培养显微镜应易于操控,以避免浪费时间。
徕卡细胞培养显微镜具备出色的易用性,并可针对个性化需求提供灵活多样的反差观察方法。
显微镜 – 高级要求
一种很常见的细胞生物学科研手段是使用荧光标记转染细胞,以便使用研究型显微镜进行后续研究。如果您使用荧光蛋白,您的细胞培养显微镜还需要配备荧光选件,以用于控制转染效率。
为实现重要的记录和标准化目的,显微镜应配备数字摄像头,最好能够记录和梳理拍摄的数据。
由于细胞培养实验室都存在空间问题,细胞培养显微镜的尺寸不宜过大,例如,最好能安装在超净台中。此外,最新趋势都要求显微镜设计得足够小巧和稳固,以便在培养箱内部使用。
明场
相差
微分干涉相差 (DIC)
整合调制相差 (IMC)
荧光
放大倍率
工作距离
摄像头
Leica DM IL LED
+
-
PH:5x 至 63x
IMC:10x、20x、32x、40x
40 mm、80 mm
+ (自由选择)
Leica DMi1
10x、20x、40x
40 mm、50 mm、80 mm
+ (集成式)
用于大批量生产应用的显微镜
生产生物材料 (例如蛋白质、疫苗或抗体) 需要在大型器皿中培养细胞。
为应对这一要求,相关的细胞培养显微镜必须具备较大的工作距离和视场。此外,它需要具备极高的稳定性,以便牢固地承载大型器皿乃至大量器皿。
Leica DM IL LED 可使用超长透射光照明臂进行配置,以便您自由调节细胞培养器皿所需要的工作距离,高度最高可达 40 cm。
细胞检测
活细胞应用
细胞培养是一个动态过程。与其它任何生物系统一样,细胞的生长和行为有时难以预测。因此,长期监测比仅仅在单个时间点检查细胞培养过程更具优势。
而这正是显微镜能够一展所长的地方,您可将其放置在培养箱中,以便全天候不间断地监测细胞。例如,借助这一特性,您可随时随地检查细胞培养的汇合程度。
光学显微镜是由两组透镜组成的光学折射系统,其中焦距较短、靠近观察物、成实像的透镜组称为物镜,焦距较长、靠近眼瞳、成虚像的透镜组则称为目镜。位于物镜前方的观察物体由物镜作放大后成倒立的实像。光学显微镜分为正置显微镜和倒置显微镜
然后,该实像再被目镜作二级放大,在位于人眼的明视距离处,得到放大效果的倒立虚像。通过显微镜机械调焦系统,可以调整并满足相对于物镜的成像条件以及观察者明视距离的二次成像条件。
光学显微镜分为正置显微镜和倒置显微镜。两者区别为:
1、物镜与载物台的相对位置不同:正置显微镜物镜转换盘朝向是向下的,载物台在物镜下方;倒置显微镜的物镜是向上的,载物台在物镜上方。
2.适用条件不同:正置显微镜物镜适合观察切片等;倒置显微镜适合观察到培养皿里面的活体细胞。
3.工作距离不同:正置显微镜物镜工作距离比较短;倒置显微镜工作距离长。
光学显微镜是由许多光学元件和金属零件组成,因此保证各光学元件的清洁及系统的稳定,对保持显微镜高效运作,延长其使用寿命大有裨益。接下来就请大家跟随蔡司君一起学习一下光学显微镜日常维护保养的一些相关知识吧。
设备放置和使用环境的维护
▪防潮
当空气太潮湿时,光学镜片容易生霉,起雾;机械零件受潮后,容易生锈。平时显微镜室应保证65%以下的湿度,潮湿地区应在室内配置除湿机。
▪控温
为避免热胀冷缩引起镜片开胶与脱落,显微镜室室温建议维持在20-24℃。
▪防尘
光学元件表面落入灰尘,不仅影响光线通过,而且经光学系统放大后,会生成很大的污斑,影响观察。灰尘、砂粒落入机械部分,还会增加磨损,危害同样很大。故显微镜室应该保持干净,显微镜不用时应用防尘罩罩住以防止落灰。
▪防腐蚀
显微镜不能和具有腐蚀性和强挥发性的化学试剂放在一起,如硫酸、盐酸、强碱等。
▪防震
显微镜的光学系统和机械系统都是经过精密校正的,在使用及保管期间要防震,同时也要注意避免阳光直射,避免空调直吹显微镜,以保证它固有的高性能。
▪稳压
显微镜室供电电压波动不应超过正常电压的±10%,电压不稳的地区应加装稳压电源,保护显微镜系统不受损害。
机械系统维护保养
▪油镜使用后用干净柔软的专业擦镜纸蘸无水乙醇采用螺旋渐进的方式轻轻擦干净油的物镜;
√ 留意擦镜纸的两个面,纹路是不同的:其中一面是粗糙的,另一面更光滑些,要使用更光滑的那一面来清洁。一般不建议用干的擦镜纸直接擦拭,同样可能划伤镜头。
▪目镜和物镜的擦试方法
√ 准备工作:在长纤维脱脂棉签顶端蘸上无水乙醇
√ 目镜:从中央部分开始,采用螺旋渐进的方式轻轻逐步擦到边缘
利用先进的成像解决方案,分析、修复、保护与记载艺术作品或文物,需要复杂的技术技能和顶级成像解决方案,尤其是以无接触、非破坏性的方式。结合数码相机技术和图像分析软件,徕卡显微系统的艺术保护显微镜解决方案专为不同领域的修复学家、艺术历史学家、考古学家以及保护工作室和博物馆的专家所设计。所有的显微镜解决方案都对详细准确地分析样品、显微分析结构及材料并存档进行了优化。
徕卡显微系统专为不同领域的修复学家、艺术历史学家、考古学家以及相关领域的专家提供各种解决方案。对详细准确地分析样品、显微分析结构及材料并存档,全部进行了优化。
显微镜解决方案尤其适用于特殊要求,与徕卡显微系统的数码相机技术和图像分析软件相结合,成为保护工作室和博物馆的许多专家常用的专业工具。
为了更好地了解每个应用领域不同的方法和技术,我们列出了下列产品,帮助您进行宝贵的艺术珍品以及不可替代的原物方面的工作。
中国航发成都发动机有限公司于1986年11月22日成立。法定代表人杨育武,公司经营范围包括:制造、加工、销售、修理航空发动机及售后服务,石油化工机械,燃气热水器,结构性金属制品,夹具,模具,量具,磨具,通用工具,轴承,非标设备,公共安全设备、器材及技术开发、技术服务、技术咨询;金属锻、铸加工;机电产品及技术、设备、原辅料、零配件的进出口;承办本公司“三来一补”业务;动力生产及节能技术改造,电气及动力工程的设计、施工、安装、维修;设备装置检验;高电压试验;防盗安全门的生产、销售;房地产开发经营;房屋租赁,设备租赁;化学品销售(不含危险化学品和易制毒化学品)等。
Leica DM2700 M为适用于明场、 暗场、 微分干涉、 偏光以及荧光用途的多功
能立式显微系统。 除了所有入射光用途之外, Leica DM2700 M同时还适用
于所有配置透射光的用途。
灵活性对于所有的样品来说都是至关重要的
配置灵活性
› 入射光轴配置有高品质明亮视场
› 内置斜照明装置
› 三个物镜转盘
› 0.7x宏观物镜直接可观察到40毫米范围的样本
› 选配入射光装置
› 适用于所有用途
› 最大视场范围可达到100 × 100毫米
› 观察高度可高达80毫米
› 适用所有显微对比方法
简化文件记录过程
图像记录、 保存和检索
适用于反射光用途的徕卡数码摄像机与徕卡应用套件中的图像采集和归档软件功能的结合, 能够确保检测结果方便有效地保存。
便于进行文件记录
徕卡摄像头与软件的完美结合
数码相机, 高清晰度成像
› 快速实时成像预览
› 图像分辨率范围从130万像素到800万像素
› 曝光时间范围从100微秒到30秒
›每个颜色通道内的颜色深度可多达16 bits
图像归档/图像分析, 徕卡应用套件
› 从简单的图像归档到自动化处理
› 适用于图像分析的常规工具
(Leica Grain & Phase Expert)
› 适用于非金属夹杂物的工具
(Leica Steel Expert)
› 适用于清洁度分析的专业工具
(Leica Cleanliness Expert)
重庆港宇高科技开发有限公司(以下简称重庆港宇)是一家在光电子技术领域专业从事工业高清数字摄像机研发、生产的高新技术企业。公司坐落在重庆市国家级新区-两江新区,具有高新技术企业和高新技术产品资质,通过ISO9001:2008质量体系认证、欧盟CE及RoHS认证等 ,同时也获得了国家科技部创新基金立项资助。公司自成立之日起,一直坚持走技术创新、自主研发的发展道路,致力于为客户提供拥有自主知识产权、高品质、可靠性强的包括工业数字高清摄像机在内的高清数字成像产品。
Ps:上图为港宇科技采购的徕卡Leica S APO格林诺夫立体光学显微镜
格林诺夫立体光学显微镜, Leica S APO 具有8:1 的连续变倍能力以及长达75毫米的工作距离,可以轻易地完成放大倍数高达80倍的工作,比如质量控制等应用。 人机工程学 38° 视角提供了舒适,高效,精准的反射光或透射光观察条件,降低了因工作疲劳引起的误观察可能性。可调节的变倍器设定功能方便了那些需要快捷重复测量的观察工作。一体式图像输出口很方便直接连接数码摄像头。
复消色差 8:1 的连续变倍功能产生10x-80x的总放大倍数 – 允许在一台仪器上实现快速,精准的75毫米工作距离下的80倍观察,节省了额外设备的经费。
75 毫米工作距离– 提供便捷的80倍放大下观察样品,如PCB板的观察和修复。
38° 视角目镜筒 – 观察更舒服,更方便。
环形荧光灯– 提供柔性照明,降低眼疲劳,防止高反光表面的反光,例如焊点。
WeChat
联系我们
19802308676
周一至周日8:30—22:30